
Name				Course/Section		
Date			Professor/TA			
? Activity	4/5	.1 How can	you id	entify (organic māc	romolecules?
Refer to the figu	re (S	ome Simple C	hemistry) on the 1	next page when	doing this activity.
Part A. Answer	r the oohyd	questions. Th Irates, lipids,	en use y proteins	our ansv	wers to develog	p simple rules for
1. What is the apmacromolecules	proxi ?	imate C:H:O r	atio in ea	ch of the	following type	es of
Carbohydrate	s	Lipids Proteins		roteins	Nucleic acids	
2. Which of the calone?	comp	ounds listed in	questior	ı 1 can o	ten be compos	ed of C, H, and O
3. Which of the c	ompo	ounds can be i	dentified	by looki	ng at the C:H:0	O ratios alone?
4. What other ele macromolecules?	ment	s are common	ly associa	ated with	each of these t	Cour types of
	Car	rbohydrates	Lip	ids	Proteins	Nucleic acids
Always contain P						
Generally contain no P						
Always contain N						
Generally contain no N						
Frequently contain						

Generally contain

no S

Some Simple Chemistry

Compound

Basic components

Reaction

Product

Carbohydrates:

Sugars, starches, glycogen, cellulose

$$\begin{array}{c|c} CH_2OH & CH_2OH \\ \hline O & H & H & O \\ \hline \end{array}$$

<u>Lipids:</u>

Fats, oils, waxes, cholesterol

Glycerol + 3 fatty acids

Triglyceride or fat

dehydration reaction

Proteins:

Enzymes, structural proteins

Amino acid

$$H_2N-C-C$$
 $N-C-C$
 $H_2N-C-C-C-N-C-C$
 $H_2N-C-C-C-N-C-C$
 $H_2N-C-C-C-N-C-C$
 $H_2N-C-C-C-N-C-C-C$
 $H_2N-C-C-C-N-C-C-C-N-C-C-C$
 $H_2N-C-C-C-N-C-C-C-N-C-C-C$
 $H_2N-C-C-C-N-C-C-N-C-C-C-N-C-C-C-N-C-C-C-N-C-C-N-C-C-C-N-C-C-N-C-C-N-C-C-C-N-C-C-N-C-C-N-C-C-N-C-C-N-C-C-N-C-$

Nucleic acids:

DNA, RNA

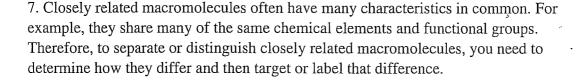
Base Base
$$(Base = A, U, G, or C)$$

Base $(Base = A, U, G, or C)$

RNA

Name _	

Course/Section	


5. Functional groups can modify the properties of organic molecules. In the table below, indicate whether each functional group is polar or nonpolar and hydrophobic or hydrophilic. Which of these functional groups are found in proteins and lipids?

Functional	Polar or	Hydrophobic	Found in all	Found in many	Found in many
group	nonpolar	or hydrophilic	proteins	proteins	lipids
—ОН					
—CH ₂					
—СООН					
NH ₂					
—SH					
PO ₄					

6. You want to use a radioactive tracer that will label only the protein in an RNA virus. Assume the virus is composed of only a protein coat and an RNA core. Which of the following would you use? Be sure to explain your answer.

- a. Radioactive P
- b. Radioactive N
- c. Radioactive S
- d. Radioactive C

- a. What makes RNA different from DNA?
- b. If you wanted to use a radioactive or fluorescent tag to label only the RNA in a cell and not the DNA, what compound(s) could you label that is/are specific for RNA?
- c. If you wanted to label only the DNA, what compound(s) could you label?

8. Based on your answers to questions 1–7, what simple rule(s) can you use to identify the following macromolecules?

Carbohydrates	
Lipids	,.
Proteins	
Nucleic acids	!
DNA versus RNA	

Part B. Carbohydrate, lipid, protein, or nucleic acid? Name that structure!

Based on the rules you developed in Part A, identify the compounds below (and on the following page) as carbohydrates, lipids, amino acids, polypeptides, or nucleic acids. In addition, indicate whether each is likely to be polar or nonpolar, hydrophilic or hydrophobic.

2)
$$HC = C - CH_2C - COOH$$

 $H^{+}-N$
 C
 N
 N
 NH_2
 N
 N
 N
 N

Part B. Continued