Date:

DOMAIN AND RANGE TASKS

- 1. The following graph represents the height above the ground versus time at a resort as Thomas rides his favorite ski slope.
 - (a) State the domain and, in your own words, what the domain represents.

- (b) State range and, in your own words, what the range represents.
- (c) What might Thomas have been doing for the interval $0 \le t \le 2$? What was his average rate of change? Use proper units in your answer.
- (d) What might Thomas have been doing for the interval $2 \le t \le 6$? What was his average rate of change? Use proper units in your answer and compare to what you found in (c).

REASONING

2. The graph below represents the height of a ball over the interval $0 \le t \le 8$. After how many seconds was the ball 12 feet off of the ground? Explain your answer.

What does your answer indicate about the range of this function?

Exercise #2: Given the function $f(x) = \frac{x}{2} - 3$ and the domain shown below, fill in the range. Write the set in

roster notation.

Domain

Range

Range:

Exercise #3: Which of the following values is *not* in the domain of the function f(x) shown below? Illustrate your thinking by marking points on the graph. your thinking by marking points on the graph.

(1) -3

(3) 5

(2) -4

(4)0

 $f(x) = \begin{cases} \frac{-(x+2)}{2} & -4 \le x \le 2\\ 4x - 10 & 2 \le x \le 4 \end{cases}.$

Exercise #4: Consider the piecewise linear function given by the formula Determine the function's range.

Graph f (-4) f(2)

£(2)

£14

Name:

Domain and Range Quiz

1. In each of the following, state the domain and range; then decide if it's a function or not. Be sure to explain using words such as input, output, domain and range!

(a)

Range: $\leq y \leq$

Function (yes/no):

(c) { (7, 4), (2, 9), (4, 6), (8, 1), (8, 5) }

Domain:

Range : _____

Function (yes/no)

(b)

Domain:

Range:

Function (yes/no):

(d)

x	f(x)
-4	9
-2	4
0	-5
3	5
6	-4
7	7
8	-10

Domain: _____

Range:

Function (yes/no)

Evaluate.

2.
$$f(x) = 6 - 4x$$
 $f(2) =$

$$f(2) =$$

3.
$$g(x) = 2x^2 - 3x$$
 $g(-3) = 0$

$$g(-3) =$$

Arithmetic Sequences

Determine if the sequence is arithmetic. If it is, find the common difference. Write recursive formula $Q_n = Q_{n-1} + d$

Find the recursive formula. $a_n = a_{n-1} + d$